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Abstract

A search for a narrow Higgs boson resonance in the diphoton mass spectrum is presented based165

on data corresponding to 10 fb−1 of integrated luminosity from proton-antiproton collisions at166

√
s = 1.96 TeV collected by the CDF experiment. In addition to searching for a resonance in167

the diphoton mass spectrum, we employ a multivariate discriminant technique for the first time168

in this channel at CDF. No evidence of signal is observed, and upper limits are set on the cross169

section times branching ratio of the resonant state as a function of Higgs boson mass. The limits170

are interpreted in the context of the standard model with an expected (observed) limit on the171

cross section times branching ratio of 9.9 (17.0) times the standard model prediction at the 95%172

credibility level for a Higgs boson mass of 125 GeV/c2. Moreover, a Higgs boson with suppressed173

couplings to fermions is excluded for masses below 114 GeV/c2 at the 95% credibility level.174

PACS numbers: 14.80.Bn, 12.38.Qk, 13.85.Rm, 14.80.Ec175
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I. INTRODUCTION176

The standard model (SM) of particle physics has proven to be a robust theory that177

accurately describes the properties of elementary particles and the forces of interaction178

between them. However, the origin of mass has remained an unsolved mystery for decades.179

The SM suggests that particles acquire mass due to interactions with the Higgs field via180

spontaneous symmetry breaking [1]. Direct searches at the Large Electron-Positron Collider181

(LEP) [2], combined with recent search results from the Tevatron [3] and the Large Hadron182

Collider (LHC) [4, 5], exclude all potential SM Higgs boson masses outside the ranges 116.6–183

119.4 GeV/c2 and 122.1–127 GeV/c2.184

In the SM, the branching ratio for a Higgs boson decaying into a photon pair B(H → γγ)185

is maximal for Higgs boson masses between about 110 and 140 GeV/c2. This is a mass range186

that is most useful for Higgs boson searches at the Fermilab Tevatron [3] and is favored by187

indirect constraints from electroweak observables [6]. The SM H → γγ branching ratio188

peaks at a value of about 0.23% for a Higgs boson mass mH = 125 GeV/c2 [7]. This is189

a very small branching ratio; however, the distinctive signal that photons produce in the190

detector makes H → γγ an appealing search mode. Compared to the dominant decay modes191

involving b quarks, a larger fraction of H → γγ events can be identified and the diphoton192

invariant mass of these events would cluster in a narrower range, thus providing a better193

discriminator against the smoothly distributed background. There are also theories beyond194

the standard model that predict a suppressed coupling of a Higgs boson to fermions. In195

these “fermiophobic” Higgs boson models, the diphoton decay can be greatly enhanced [8].196

The Collider Detector at Fermilab (CDF) and D0 experiments at the Tevatron have197

searched for both a SM Higgs boson, H, and a fermiophobic Higgs boson, hf , decaying to198

two photons [9–12]. The CDF and D0 experiments recently set 95% credibility level (C.L.)199

upper limits on the cross section times branching ratio σ × B(H → γγ) relative to the SM200

prediction and on B(hf → γγ) using data corresponding to an integrated luminosity L of201

7.0 fb−1 [13] and 8.2 fb−1 [14], respectively. The hf result sets a lower limit on mhf
of202

114 GeV/c2 and 112.9 GeV/c2, respectively. These results surpassed for the first time the203

109.7 GeV/c2 mass limit obtained from combined searches at the LEP collider at CERN [8].204

Recently, the ATLAS and CMS experiments at the LHC at CERN have searched for a SM205

Higgs boson decaying to two photons using L = 4.9 fb−1 [15] and 4.8 fb−1 [16], respectively.206
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In the low mass range, rates corresponding to less than twice the SM cross section are207

excluded at 95% C.L. An excess of nearly 2σ is present in both the CMS and ATLAS208

results, which could be consistent with a SM Higgs boson with a mass near 125 GeV/c2.209

In this Letter, we present a search for a Higgs boson decaying to two photons using the210

final CDF diphoton data set, corresponding to an integrated luminosity of 10 fb−1. This211

analysis searches the diphoton mass distribution for a narrow resonance that could reveal212

the presence of a SM or fermiophobic Higgs boson, updating the previous CDF result [13]213

with more than 40% additional integrated luminosity. We furthermore implement a new214

multivariate technique for events that contain two central photons, using both diphoton and215

jet kinematic variables to improve the sensitivity for identifying a Higgs boson signal from216

the diphoton backgrounds.217

II. HIGGS BOSON SIGNAL MODEL218

For the SM search, we consider the three most likely production mechanisms at the219

Tevatron: gluon fusion (GF); associated production (VH), where a Higgs boson is produced220

in association with a W or Z boson; and vector boson fusion (VBF), where a Higgs boson221

is produced alongside two quark jets. As an example, the SM cross sections for mH =222

125 GeV/c2 are 949.3 fb [17], 208.0 fb [18], and 65.3 fb [19], respectively. In the fermiophobic223

search, we consider a benchmark model in which a Higgs boson does not couple to fermions,224

yet retains its SM couplings to bosons [8]. In this model, the GF process is suppressed and225

fermiophobic Higgs boson production is dominated by VH and VBF. With L = 10 fb−1,226

about 28 (43)H → γγ (hf → γγ) events are predicted to be produced formH = 125 GeV/c2.227

Only about 25% of these events would produce photons that are absorbed in well-228

instrumented regions of the CDF detector and pass the full diphoton selection discussed in229

Section III [13]. This fraction, along with the predicted distributions of kinematic variables,230

is obtained from a simulation of Higgs boson decays into diphotons. For each Higgs boson231

mass hypothesis tested in the range 100–150 GeV/c2, in 5 GeV/c2 steps, signal samples are232

developed from the pythia 6.2 [20] Monte Carlo (MC) event generator and a parametrized233

response of the CDF II detector [21, 22]. All pythia samples were made with CTEQ5L [23]234

parton distribution functions, where the pythia underlying event model is tuned to CDF jet235

data [24]. Each signal sample is corrected for multiple interactions and differences between236
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the identification of photons in the simulation and the data [13]. The GF signal is further-237

more corrected based on a higher-order theoretical prediction of the transverse momentum238

distribution [25].239

III. DETECTOR AND EVENT SELECTION240

We use the CDF II detector [26] to identify photon candidate events produced in pp̄241

collisions at
√
s = 1.96 TeV. The silicon vertex tracker [27] and the central outer tracker [28],242

contained within a 1.4 T axial magnetic field, measure the trajectories of charged particles243

and determine their momenta. Particles that pass through the outer tracker reach the244

electromagnetic (EM) and hadronic calorimeters [29–31], which are divided into two regions:245

central (|η| < 1.1) and forward or “plug” (1.1 < |η| < 3.6). The EM calorimeters contain246

fine-grained shower maximum detectors [32], which measure the shower shape and centroid247

position in the plane transverse to the direction of the shower development.248

The event selection is the same as in the previous H → γγ search [13]. Events with two249

photon candidates are selected and the data are divided into four independent categories250

according to the position and type of the photons. In central-central (CC) events, both251

photon candidates are detected within the fiducial region of the central EM calorimeter252

(|η| < 1.05); in central-plug (CP) events, one photon candidate is detected in this region253

and the other is in the fiducial region of the plug calorimeter (1.2 < |η| < 2.8); in central-254

central events with a conversion (C�C), both photon candidates are in the central region,255

but one photon converts and is reconstructed from its e+e− decay products; in central-plug256

events with a conversion (C�P), there is one central conversion candidate together with a257

plug photon candidate.258

In order to improve sensitivity for the fermiophobic Higgs boson search, the event selection259

is extended by taking advantage of the final-state features present in the VH and VBF260

processes. Because the Higgs boson from these processes will be produced in association261

with a W or Z boson, or with two jets, the transverse momentum of the diphoton system p
γγ

T
262

is generally higher relative to the diphoton backgrounds. A requirement of pγγ
T

> 75 GeV/c263

isolates a region of high hf sensitivity, retaining roughly 30% of the signal while removing264

99.5% of the background [12]. Two lower-pγγ
T

regions, pγγ
T

< 35 GeV/c and 35 GeV/c <265

p
γγ

T
< 75 GeV/c, are additionally included and provide about 15% more sensitivity to the266
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FIG. 1. The invariant mass distribution of CC photon pairs in the data is shown for (a) the entire

p
γγ

T
region used in the SM Higgs boson diphoton resonance search and (b) the highest-pγγ

T
region

(the most sensitive region) used in the hf diphoton resonance search. Each distribution shows a

fit to the data for the hypothesis of mH = 125 GeV/c2, for which the signal region centered at

125 GeV/c2 is excluded from the fit. The expected shape of the signal from simulation is shown

in the inset of (a).

hf signal. With four diphoton categories (CC, CP, C�C, and C�P) and three p
γγ

T
regions,267

twelve independent channels are included for the fermiophobic Higgs boson search.268

IV. DIPHOTON RESONANCE SEARCH269

The decay of a Higgs boson into a diphoton pair would appear as a very narrow peak in270

the distribution of the invariant mass mγγ of the two photons. The diphoton mass resolution271

as determined from simulation is better than 3% for the Higgs boson mass region studied272

here and is limited by the energy resolution of the electromagnetic calorimeters [33] and273

the ability to identify the primary interaction vertex [13]. The diphoton invariant mass274

distribution for the most sensitive search category in the SM and fermiophobic scenarios is275

provided in Fig. 1, with an inset showing the signal shape expected from simulation. In each276

diphoton category, we perform a search of the mγγ spectrum for signs of a resonance.277

For this search, the total diphoton background is modeled from a fit to the binned dipho-278

ton mass spectrum of the data using a log-likelihood (logL) method, as described in [13].279
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The fit is performed independently for each diphoton category and includes only the sideband280

region for each mH hypothesis, which is the control region excluding a mass window centered281

on the Higgs boson mass being tested. The full width of the mass window is chosen to be282

approximately ±2 standard deviations of the expected Higgs boson mass resolution, which283

amounts to 12 GeV/c2, 16 GeV/c2, and 20 GeV/c2 for mass hypotheses of 100–115 GeV/c2,284

120–135 GeV/c2, and 140–150 GeV/c2, respectively. The fit for the CC category for mH =285

125 GeV/c2 is shown in Fig. 1.286

V. MULTIVARIATE DISCRIMINATOR287

The diphoton mass distribution is the most powerful variable for separating a Higgs288

boson signal from the diphoton backgrounds. However, other information is available that289

can be used to further distinguish this signal. We improve the most sensitive search category290

(CC) by using a “Multi-Layer Perceptron” neural network (NN) [34], which combines the291

information of several well-modeled kinematic variables into a single discriminator, optimized292

to separate signal and background events. Four kinematic variables are included: mγγ, p
γγ

T
,293

the difference between the azimuthal angles of the two photons, and the cosine of the photon294

emission angle relative to the colliding hadrons in the diphoton rest frame (the Collins-Soper295

angle) [35]. For events with jets, we also include four variables related to the jet activity,296

which are particularly useful for identifying VBF and VH signal events. These variables297

are the number of jets in the event, the sum of the jet transverse energies, and the event298

sphericity and aplanarity [36]. Jets are reconstructed from tower clusters in the hadronic299

calorimeter within a cone of radius 0.4 in the η − φ plane [37]. Each jet is required to have300

|η| < 2 and a transverse energy ET > 20 GeV, where the energy is corrected for calorimeter301

response, multiple interactions, and absolute energy scale.302

In order to optimize the performance of the method, we divide the CC category into two303

independent subsamples of events: the CC0 category for events with no jets and the CCJ304

category for events with at least one jet. The CC0 category uses a network trained with305

only the four diphoton variables; the CCJ category uses a network trained with the four306

diphoton and four jet variables.307

The sideband fit used in the diphoton resonance search provides an estimate of the to-308

tal background prediction in each signal mass window; however, the multivariate analysis309
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requires a more detailed background model. Specifically, we divide the background into310

its distinct components in order to best model all input variables used by the discriminant,311

which is also sensitive to correlations. There are two main background components in the CC312

data sample: a prompt diphoton (γγ) background produced from the hard parton scattering313

or from hard photon bremsstrahlung from energetic quarks, and a background comprised314

of γ-jet and jet-jet events (γj + jj ) in which the jets are misidentified as photons [38]. To315

model the shape of kinematic variables in the γγ background, we use a pythia MC sample316

developed and studied in a measurement of the diphoton cross section [35]. To model the317

variable shapes in the γj + jj background, we obtain a data sample enriched in misidentified318

photons by selecting events for which one or both photon candidates fail the NN photon ID319

requirement [13].320

In the diphoton cross section analysis [35] it was found that a p
γγ

T
-dependent correction321

was needed for the pythia modeling. We adopt the correction for this analysis, reweighting322

the p
γγ

T
distribution from pythia to match the p

γγ

T
distribution from control regions in323

prompt diphoton data. For each category, CC0 and CCJ, and for each Higgs boson mass324

hypothesis, event weights are derived based on the sideband regions, excluding the signal325

mass window. The weights are derived by fitting a smooth function to the ratio of the p
γγ

T
326

distribution from the data to that from the pythia prediction. The best fit in the CC0327

category is obtained from a polynomial (constant) function for p
γγ

T
< 50 GeV/c (pγγ

T
>328

50 GeV/c). A different polynomial (constant) function provides the best fit in the CCJ329

category for p
γγ

T
< 60 GeV/c (pγγ

T
> 60 GeV/c). Figure 2 shows the reweighting function330

for a Higgs boson mass hypothesis of 125 GeV/c2. The solid curve shows the best fit to331

the data and the other two curves show the variations induced by propagating the 68%332

C.L. fit uncertainties to the fitting function. The rise of the reweighting function from333

p
γγ

T
∼ 20 GeV/c to p

γγ

T
∼ 50 GeV/c in both the CC0 and CCJ categories is interpreted in334

Ref. [35] as an effect of parton fragmentation not modeled in pythia, which contributes to335

the prompt diphoton production cross section in that range.336

The relative contributions of the two background components are obtained from a fit337

to the diphoton data. Three histograms for each NN input variable are constructed: one338

from the γγ background sample after reweighting, one from the γj + jj background sample,339

and one from the diphoton data. Events used for the fit are required to have diphoton mass340

values greater than 70 GeV/c2 and to be outside of the signal mass window. The histograms341
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FIG. 2. For a Higgs boson mass of 125 GeV/c2, the reweighting function obtained from the ratio

of the p
γγ

T
distribution in pythia to the p

γγ

T
distribution in prompt diphoton data, for events with

(a) zero jets and (b) at least one jet. In both plots, the best fit to the pythia-to-data ratio points

is given by a solid curve. The other two curves show the systematic uncertainty of the fit.

are then used to build a χ
2 function defined by342

χ
2 =

Nbins�

i=1

Nvariables�

j=1

�
(αgij + βfij − dij)2

dij

�

(1)

where gij, fij, and dij refer to the number of events in the ith bin of the jth input variable for343

the prompt γγ background, γj + jj background, and diphoton data samples, respectively.344

The sums are over all bins of each input variable for which there are at least 5 events in345

the data, and the global α and β coefficients are determined by minimizing the χ2 function.346

This function is defined and minimized separately for each Higgs boson mass hypothesis and347

for each category (CC0 and CCJ).348

A neural network discriminant is trained separately for each mass hypothesis using signal349

and background events. The signal events used in the training are optimized for the SM350

scenario and are composed of GF, VH, and VBF pythia samples so that the corresponding351

total numbers are proportional to their SM cross section predictions. The background sample352

is made by taking a portion of the γj + jj sample available for each mass hypothesis and353

adding γγ events from pythia weighted by the ratio α/β from the χ2 fit for the given mass354

hypothesis.355

After training, the NN is applied to the diphoton data sample. Figure 3 shows input356

variables such as the p
γγ

T
distribution for events with no reconstructed jets and the sum of357

the jet ET for events with ≥1 reconstructed jet. The signal shapes are scaled to 20 times the358
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expected number of reconstructed events in the SM scenario. The background prediction is359

also provided. While the χ2 fit described by Eq. (1) is used to fix the relative composition of360

the γγ and γj + jj background components, the total expected number of background events361

is more accurately determined from sideband mass fits, which is the technique described in362

Section IV. The resulting NN shapes for mH = 125 GeV/c2 are provided in Figure 4.363
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VI. SYSTEMATIC UNCERTAINTIES364

The sources of systematic uncertainties on the expected number of signal events are365

the same as in the previous CDF H → γγ search [13]. They arise from the conversion ID366

efficiency (7%), the integrated luminosity measurement (6%), varying the parton distribution367

functions used in pythia (up to 5%) [39, 40], varying the parameters that control the amount368

of initial- and final-state radiation from the parton shower model of pythia (about 4%),369

and the pythia modeling of the shape of the p
γγ

T
distribution for the hf signal (up to370

4%) [41]. Finally, we include uncertainties from the photon ID efficiency (up to 4%), the371

trigger efficiency (less than 3%), and the EM energy scale (less than 1%).372

The statistical uncertainties on the total background in the signal region are determined373

by the fit. They are 3% or less for the channels associated with the SM diphoton resonance374

search and are less than 6% for the CC0 and CCJ categories used in the multivariate tech-375

nique. For the channels associated with the fermiophobic Higgs boson diphoton resonance376

search, the background rate uncertainty is 12% or less, except for the high-pγγ
T

bins with377

conversion photons, where it is 20%.378

For the search using the multivariate technique, in addition to the rate uncertainties379

summarized above, we consider shape uncertainties and bin-by-bin statistical uncertainties380

of the NN discriminant. The signal shape uncertainties are associated with initial- and381

final-state radiation and the jet energy scale [37], and the background shape uncertainties382

are associated with the pythia p
γγ

T
-correction and the jet energy scale. The pythia shape383

uncertainties due to the p
γγ

T
fits are taken as uncorrelated between the CC0 and the CCJ384

categories because the fits determining the corrections for each category are done indepen-385

dently. The jet energy scale shape uncertainties are correlated between the two categories in386

order to take into account event migration between categories. The dominant uncertainty in387

the multivariate analysis is the bin-by-bin statistical uncertainty of the γj + jj background388

histograms.389

VII. RESULTS390

No evidence of a narrow peak or any other structure is visible in the diphoton mass spec-391

trum or the NN output distribution. We calculate a Bayesian C.L. limit for each Higgs boson392
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mass hypothesis based on a combination of likelihoods from the discriminant distributions393

for all channels in the corresponding mass signal region. The combined limits for the SM394

search use the NN discriminants of the CC0 and CCJ categories and the mass discriminants395

from the CP, C�C, and C�P categories. The fermiophobic limits use the NN discriminants396

of the CC0 and CCJ categories and the mass discriminants from the CP, C�C, and C�P397

categories divided into p
γγ

T
regions. For the limit calculation, we assume a flat prior (trun-398

cated at zero) for the signal rate and a truncated Gaussian prior for each of the systematic399

uncertainties. A 95% C.L. limit is determined such that 95% of the posterior density for400

σ × B(H → γγ) falls below the limit [42]. The expected 95% C.L. limits are calculated401

assuming no signal, based on expected backgrounds only, as the median of 2 000 simulated402

experiments. The observed 95% C.L. limits on σ × B(H → γγ) are calculated from the403

data.404

For the SM Higgs boson search, the results are given relative to the theory prediction,405

where theoretical cross section uncertainties of 14% on the GF process, 7% on the VH406

process, and 5% on the VBF process are included in the limit calculation [43]. For the407

hf model, SM cross sections and uncertainties are assumed (GF excluded) and used to408

convert limits on σ × B(hf → γγ) into limits on B(hf → γγ). The SM and fermiophobic409

limit results for the CC category alone are provided in Table I, showing the gain obtained410

by incorporating a multivariate technique for this category. The combined limit results for411

both searches are displayed in Table II and graphically in Fig. 5. Limits are also provided on412

σ × B(H → γγ) for the SM search without including theoretical cross section uncertainties.413

For the SM limit at mH = 120 GeV/c2, we observe a deviation of greater than 2.5σ from414

the expectation. After accounting for the trials factor associated with performing the search415

at 11 mass points, the significance of this discrepancy decreases to less than 2σ. When416

the analysis is optimized for the fermiophobic benchmark model, no excess is observed.417

For the hf model, we obtain a limit of mhf
< 114 GeV/c2 by linear interpolation between418

the sampled values of mhf
based on the intersection of the observed limit and the model419

prediction.420
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TABLE I. Expected and observed 95% C.L. upper limits on the production cross section multiplied

by the H → γγ branching ratio relative to the SM prediction for the most sensitive category (CC)

using the NN discriminant. For comparison, values for the CC category are also provided based on

the diphoton resonance technique, which uses the mγγ shape as a discriminant for setting limits.

The expected and observed 95% C.L. upper limits on the hf branching ratio (in %) are provided

in parentheses, based on both the NN discriminant and diphoton resonance technique for the CC

category.

mH NN discriminant mγγ discriminant

(GeV/c2) Expected Observed Expected Observed

100 13.9 (4.6) 10.6 (4.7) 15.1 (5.1) 11.3 (3.5)

105 12.6 (4.6) 13.0 (6.1) 14.1 (5.5) 10.6 (5.1)

110 11.9 (5.2) 11.8 (5.5) 13.5 (5.8) 11.4 (6.3)

115 11.4 (5.2) 14.1 (6.7) 12.9 (6.2) 15.4 (6.0)

120 11.3 (5.5) 23.2 (9.2) 12.8 (6.6) 22.2 (7.3)

125 11.7 (6.4) 20.5 (10.2) 12.9 (6.9) 21.2 (8.0)

130 12.5 (7.0) 13.1 (6.5) 13.9 (7.3) 16.0 (6.0)

135 13.7 (7.7) 15.0 (6.0) 15.3 (7.9) 17.2 (4.9)

140 16.5 (8.2) 20.4 (8.1) 17.5 (8.3) 25.4 (5.9)

145 18.5 (8.4) 27.4 (11.8) 21.2 (8.6) 24.3 (8.8)

150 25.7 (8.7) 17.1 (7.0) 28.2 (9.0) 15.1 (8.4)

VIII. SUMMARY AND CONCLUSIONS421

This Letter presents the results of a search for a narrow resonance in the diphoton mass422

spectrum using data taken by the CDF II detector at the Tevatron. We have improved423

upon the previous CDF analysis by implementing a neural network discriminant to increase424

sensitivity in the most sensitive diphoton category by as much as 13%. In addition, we have425

included the full CDF data set, which adds more than 40% additional integrated luminosity426

relative to the previous diphoton Higgs boson search. There is no significant evidence of a427

resonance in the data. Limits are placed on the production cross section times branching428
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ratio for Higgs boson decay into a photon pair and compared to the predictions of the429

standard model and a benchmark fermiophobic model. The latter results in a limit on the430

fermiophobic Higgs boson mass of mhf
< 114 GeV/c2 at the 95% C.L.431

TABLE II. Expected and observed 95% C.L. upper limits on the production cross section times

branching ratio relative to the SM prediction, the production cross section times branching ratio

with theoretical cross section uncertainties removed, and the hf branching ratio. The fermiophobic

benchmark model prediction for B(hf → γγ) is also shown for comparison.

mH (GeV/c2) 100 105 110 115 120 125 130 135 140 145 150

σ× B(H → γγ)/SM
Expected 12.2 10.9 10.6 9.7 9.7 9.9 10.5 11.6 14.0 16.0 21.3

Observed 10.4 11.0 7.7 10.9 21.3 17.0 12.9 12.9 18.3 21.2 14.9

σ× B(H → γγ) (fb)
Expected 45.1 39.0 37.2 31.8 29.7 27.2 25.5 24.0 23.0 20.4 20.2

Observed 37.9 40.6 26.8 35.9 66.6 47.7 31.5 26.5 30.7 27.2 13.9

Expected 3.7 3.8 4.3 4.3 4.6 5.3 5.7 6.1 6.6 6.7 7.1

B(hf → γγ) (%) Observed 4.9 5.1 3.5 4.8 5.9 4.9 5.3 7.9 8.4 8.3 5.0

Fermiophobic prediction 18.5 10.4 6.0 3.7 2.3 1.6 1.1 0.8 0.5 0.4 0.3
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